More than a whistle: Automated detection of marine sound sources with a convolutional neural network

Author:

White Ellen L.,White Paul R.,Bull Jonathan M.,Risch Denise,Beck Suzanne,Edwards Ewan W. J.

Abstract

The effective analysis of Passive Acoustic Monitoring (PAM) data has the potential to determine spatial and temporal variations in ecosystem health and species presence if automated detection and classification algorithms are capable of discrimination between marine species and the presence of anthropogenic and environmental noise. Extracting more than a single sound source or call type will enrich our understanding of the interaction between biological, anthropogenic and geophonic soundscape components in the marine environment. Advances in extracting ecologically valuable cues from the marine environment, embedded within the soundscape, are limited by the time required for manual analyses and the accuracy of existing algorithms when applied to large PAM datasets. In this work, a deep learning model is trained for multi-class marine sound source detection using cloud computing to explore its utility for extracting sound sources for use in marine mammal conservation and ecosystem monitoring. A training set is developed comprising existing datasets amalgamated across geographic, temporal and spatial scales, collected across a range of acoustic platforms. Transfer learning is used to fine-tune an open-source state-of-the-art ‘small-scale’ convolutional neural network (CNN) to detect odontocete tonal and broadband call types and vessel noise (from 0 to 48 kHz). The developed CNN architecture uses a custom image input to exploit the differences in temporal and frequency characteristics between each sound source. Each sound source is identified with high accuracy across various test conditions, including variable signal-to-noise-ratio. We evaluate the effect of ambient noise on detector performance, outlining the importance of understanding the variability of the regional soundscape for which it will be deployed. Our work provides a computationally low-cost, efficient framework for mining big marine acoustic data, for information on temporal scales relevant to the management of marine protected areas and the conservation of vulnerable species.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3