Artificial Insemination and Parthenogenesis in the Zebra Shark Stegostoma tigrinum

Author:

Adams Lance,Lyons Kady,Larkin Elizabeth,Leier Nicole,Monday Janet,Plante Chris,Dubach Jean,Wyffels Jennifer

Abstract

Maintaining self-sustaining populations of zoo and aquarium collections can be challenged when natural reproduction fails within mixed-sex populations; however, reproductive success can sometimes be restored with the application of reproductive technologies. Among a population of three female and one male Zebra Sharks (Stegostoma tigrinum), production of young failed despite constant male presence with two of the females. To determine if assisted techniques could be used to rescue sexual reproduction, artificial insemination was performed in a singleton female twice over a three-year period using freshly collected semen. Hatching success for eggs laid by all three females was monitored to compare natural and artificial insemination modes. After the first insemination (December 15th, 2011), 143 yolked eggs resulted in no sexually produced offspring and four genetically-confirmed, parthenogenetic offspring. After the second insemination (September 24th, 2013), 62 yolked eggs resulted in two sexually produced offspring, 18 and 33 days after insemination, and three parthenogenetic offspring > 213 days post-insemination. For the two females housed with the male, no sexual offspring resulted. All females produced at least one hatched parthenote. This study successfully employed artificial insemination to circumvent barriers to natural reproduction in Zebra Sharks. With further development, artificial insemination represents a powerful tool that could be used for maintaining genetic diversity for animals housed in aquaria and conservation-based breeding programs for elasmobranchs.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3