Catch and Length Models in the Stock Synthesis Framework: Expanded Application to Data-Moderate Stocks

Author:

Rudd Merrill B.,Cope Jason M.,Wetzel Chantel R.,Hastie James

Abstract

Many fisheries in the world are data-moderate, with data types (e.g., total removals, abundance indices, and biological composition data) of varied quality (e.g., limited time series or representative samples) or available data. Integrated stock assessments are useful tools for data-moderate fisheries as they can include all available information, can be updated due to the availability of more information over time, and can directly test the inclusion and exclusion of specific data types. This study uses the simulation testing and systematic data reduction from the US West Coast benchmark assessments to examine the performance of Stock Synthesis with catch and length (SS-CL) compositions only. The simulation testing of various life histories, recruitment variabilities, and data availability scenarios found that the correctly specified SS-CL can estimate unbiased key population quantities such as stock status with as little as 1 year of length data although 5 years or more may be more reliable. The error in key population quantities is decreased with an increase in years and the sample size of length data. The removal of the length compositions from benchmark assessments often caused large model deviations in the outputs compared to the removal of other data sources, indicating the importance of length data in integrated models. Models with catch and length data, excluding abundance indices and age composition, generally provided informative estimates of the stock status relative to the reference model, with most data scenarios falling within the CIs of the reference model. The results of simulation analysis and systematic data reduction indicated that SS-CL is potentially viable for data-moderate assessments in the USA, thus reducing precautionary buffers on catch limits for many stocks previously assessed in a lower tier using catch-only models. SS-CL could also be applied to many stocks around the world, maximizing the use of data available via the well tested, multifeature benefits of SS.

Funder

National Marine Fisheries Service, National Oceanic and Atmospheric Administration

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3