Quantitative evaluation of sea reclamation activities on tidal creek connectivity

Author:

Man Ying,Zhou Fangwen,Wang Qing,Cui Baoshan

Abstract

Deltas are in a dynamic balance due to the impact of fluvial and coastal flooding, and hydrological connectivity plays an important role. In recent decades, the dynamic equilibrium has been influenced by upstream and local human activities, including sea reclamation activities. However, in most instances, the influence of human activities has not been explicitly distinguished and quantified in detail. In this paper, the influence of sea reclamation activities on hydrological connectivity in the Yellow River Delta was quantified by parameterizing the resistance surfaces (a spatial layer that assigns a value to each landscape feature, indicating the degree to which that variable impedes or promotes movement) that includes sea reclamation activities. By optimizing a functional relationship between landscape features and hydrological connectivity (water flow movement patterns), the values in the resistance surfaces could be assigned. We first calculated hydrological distances among bifurcations from 1985 to 2020 with a 5-year interval representing the hydrological connectivity of each tidal creek. The sea reclamation activities in the YRD were classified into four: reclaimed land, sea enclosure activity, freshwater resource facilities, and engineering in the oil field to create resistance surfaces. We identified that the periods of 1990–1995 and 2000–2005 were under the most severe influence of sea reclamation activities. Sea enclosure activity, freshwater resource facilities, and engineering in oil fields played major roles in composing resistance surfaces. Mariculture (quantified relative resistance value, 1.00), reservoir (0.92), agriculture (0.91), and river (0.97) were the features with the highest resistance values in the initial and mature development stages. The formation of resistance (costs to movement) was due to human activities and natural factors, for example, the evolution of tidal creeks. To develop the resource in tidal flats sustainably, systematic monitoring and sufficient conservation awareness were required. This study contributed to coastal management and planning by providing a quantified assessment of different types of sea reclamation activities.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3