Warm bias of cold sea surface temperatures in the East Sea (Japan Sea)

Author:

Yoon Seung-Tae,Park JongJin

Abstract

The East/Japan Sea (ES) is regarded as a natural laboratory for predicting future changes in the global Meridional Overturning Circulation (MOC) under warming climates, as the ES MOC (EMOC) changes rapidly in comparison with the global MOC. Specifically, intermediate and deep-water masses of the ES are formed in its northern reaches via wind-driven subduction of surface water, and convection from the surface to deep layers during the winter. Accordingly, it is important to investigate the variation of winter sea surface temperatures (SSTs) for characterizing and predicting the EMOC; however, global SST products must be corrected and optimized for the ES, as they fail to incorporate the local marginal sea conditions. Here, a warm bias in cold SST was identified for three SST products, such as optimally interpolated sea surface temperatures (OISSTs), microwave SSTs, and operational SST and sea ice analysis products, suggesting the potential usefulness of a correction method incorporating Argo float data. When comparing OISSTs with 5 m temperature estimates from Argo float data during 2000–2020, under the assumption that the mixed layer depth is deeper than 8 m, a nearly normalized histogram of biases was produced, and the robust warm bias (mean = 0.9°C) was detected in the range of relatively cold SSTs (-2°C to 10°C), yet no significant bias in warm SSTs (> 10°C) was found. To minimize the warm bias in cold SSTs, OISSTs were corrected with an inverse 4th-order polynomial fitting method. Subsequently, the mean bias between the corrected SSTs and top depth temperatures of Argo float data was significantly reduced to less than 0.1°C. Moreover, the warm bias of cold SSTs resulted in severe underestimations of the outcropping area colder than 1°C over the northern region, as well as the occurrence period of 1°C to 5°C SSTs in the north-western ES. These results highlight the importance of local bias correction for SST products, and it is expected that the newly suggested correction method will improve model predictions of EMOC change by enhancing SST data quality in the northern ES.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3