A deep learning approach for object detection of rockfish in challenging underwater environments

Author:

Liu Mingxin,Jiang Wencheng,Hou Mingxin,Qi Zihua,Li Ruixin,Zhang Chun

Abstract

IntroductionPreserving the marine ecological environment and safeguarding marine species is a global priority. However, human overfishing has led to a drastic decline in fish species with longer growth cycles, disrupting the equilibrium of the marine ecosystem. To address this issue, researchers are turning to deep learning techniques and state-of-the-art underwater devices, such as underwater robots, to explore the aquatic environment and monitor the activities of endangered populations. This approach has emerged as a focal point of recent research in protecting the marine ecological environment. This study employs a deep learning-based object detection algorithm to identify fish species in complex underwater environments.MethodsThe algorithm is built upon the You Only Look Once version 7(YOLOv7) algorithm, with the addition of the attention mechanism Convolutional Block Attention Module (CBAM) in the network’s backbone. CBAM enhances the feature maps through the fusion of spatial attention and channel attention, ultimately improving the robustness and accuracy of the model’s inference by replacing the original loss function CIoU with SCYLLAIntersection over Union(SIoU). In this paper, the rockfish pictures in the dataset Label Fishes in the Wild published by the National Marine Fisheries Service are selected, and the underwater image enhancement model (UWCNN) is introduced to process the pictures.ResultThe experimental results show that the mean average precision (mAP) value of the improved model on the test set is 94.4%, which is 3.5% higher than the original YOLOv7 model, and the precision and recall rate are 99.1% and 99%, respectively. The detection performance of the algorithm in the field of complex underwater environment is improved.DiscussionThe underwater fish detection scheme proposed in this study holds significant practical value and significance in promoting the conservation of marine ecosystems and the protection of fish species.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference55 articles.

1. Enhancement of deep-sea floor images obtained by an underwater vehicle and its evaluation by crab recognition;Ahn;J. Mar. Sci. Technol.,2017

2. Yolov4: Optimal speed and accuracy of object detection;Bochkovskiy;arXiv preprint arXiv:2004.10934,2020

3. Underwater image processing method for fish localization and detection in submarine environment;Boudhane;J. Visual Communication Image Representation,2016

4. Underwater target recognition based on improved yolov4 neural network;Chen;Electronics,2021

5. Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild;Cutter,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3