Quantifying zoobenthic blue carbon storage across habitats within the Arctic’s Barents Sea

Author:

Souster Terri A.,Barnes David K. A.,Primicerio Raul,Jørgensen Lis Lindal

Abstract

IntroductionThe Arctic sea ice extent in September (when it is at its lowest) has declined 13% Q10 per decade, and the Arctic Ocean is becoming a more Atlantic-influenced system. Rapid climate-forced changes are taking place in many high-latitude marine ecosystems. The Barents Sea is one such high-latitude shelf ecosystem, between approximately 70° and 80°N in the Norwegian Arctic. The purpose of the current study was to estimate zoobenthic blue carbon across multiple habitats within the Barents Sea (trough, basin, shelf, and shallows), potentially providing values to aid ecosystem-based management of these areas under future climate change scenarios.MethodWe tested this by capture and analysis of 947 high-resolution (each 405.7 × 340.6 mm, 12 MB, 5 megapixels) seabed images at 17 sites with latitudinal cline, linked to a collection of corresponding oceanographic data. Biotas within these images were identified to one of the 14 functional groups and the density was calculated. Mean stored carbon per individual was assigned by ash mass (AM) and ash-free dry mass (AFDM) of individuals caught within Agassiz trawl deployments at the same sites.ResultsTrough sites, except for one site (B16), have a low quantity of zoobenthic blue carbon compared with the shallow, shelf, and basin habitats.DiscussionThe results of a previous study focused entirely on trough habitats and are therefore difficult to scale up as the basis for a meaningful estimate of across-habitat zoobenthic blue carbon in the Barents Sea. Compared with the trough and the basin, the shelf and shallow habitats of the Barents Sea are also subjected to more trawling events through demersal fisheries and showed higher zoobenthic blue carbon stock values.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3