Impact of Microsetella norvegica on carbon flux attenuation and as a secondary producer during the polar night in the subarctic Porsangerfjord

Author:

Mooney Benjamin Paul,Iversen Morten Hvitfeldt,Norrbin Maria Fredrika

Abstract

It is known that Microsetella norvegica feed on phytoplankton and provide an important link to higher trophic levels in Arctic fjords, such as fish sprat (Sprattus sprattus) and three-spined stickleback (Gasterosteus aculeatus). It has recently been suggested that M. norvegica may also contribute substantially to carbon flux attenuation during periods of high abundance. However, we still know very little about how seasonal variations in abundance and vertical distribution of M. norvegica impact the efficiency of the biological carbon pump in Arctic fjords. We investigated the role of Microsetella norvegica, a small harpacticoid copepod, for particulate organic carbon flux attenuation via aggregate feeding in a subarctic fjord. We quantified the vertical distribution and abundance of M. norvegica, phytoplankton, and marine snow simultaneously with a Digital Autonomous Video Plankton Recorder in Porsangerfjord, northern Norway, between August 2013 and November 2014. We estimated the highest abundance of M. norvegica as 4.86x106 individuals m-2 in October. Our results suggest that M. norvegica preferred diatoms over both marine snow and the prymnesiophyte Phaeocystis pouchetii during euphotic bloom conditions. However, during oligotrophic conditions when phytoplankton were scarce, M. norvegica switched to marine snow as a food source. M. norvegica has the potential to explain 1.4% and 0.29% of the total carbon flux attenuation in October and November, respectively. These results suggest that small copepods feed on settling detritus when no alternative food is available. Detritus feeding by M. norvegica may have an ecological impact during the polar night, both via direct carbon flux attenuation, but also as secondary producers in periods with low primary production. Currently small copepods such as M. norvegica are not included in carbon budgets or large-scale modelling, but considering their potentially high abundance they may represent an important but overlooked pathway in both the carbon cycle and trophic level interactions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3