Assessment of fishery management parameters for major prey fish species in the lower reaches of the Songhua River

Author:

Lu Wanqiao,Li Peilun,Ma Bo,Huo Tangbin,Yin Zengqiang,Tang Fujiang,Wang Jilong

Abstract

The stability of the ecosystem directly affects the water quality and safety, fishery production, and people’s quality of life along the route. In this study, extensive biological information on five dominant species of prey fish, includingHemiculter leucisculus(Basilewsky, 1855),Acheilognathus macropterus(Bleeker),Rhodeus sericeus(Pallas,1776),Pseudorasbora parva(Temminck & Schlegel, 1846), andSqualidus argentatus(Sauvage & Dabry de Thiersant, 1874), was collected in the lower reaches of the Songhua River, and the population parameters and variation rules of these fish were evaluated. The results showed that at present, the fish resources in the lower reaches of the Songhua River were in an overexploited state. Although the growth rate of prey fish was accelerating, their growth potential was decreasing. In addition to the homogeneous structure of the fish community, it was increasingly evident that a high proportion of small-sized fish were present in the fish community. In addition, the growth length coefficients of the five prey fish species were all greater than 0.2, indicating that the prey fish were growing at a faster rate, and the range of the growth performance indicators were 3.49 ~ 4.37. Our data also demonstrated that the exploitation rates ofHemiculter leucisculusandSqualidus argentatuswere both greater than 0.5, and the exploitation rates of all species were higher thanEmaxexcept forPseudorasbora parva. Finally, based on the above results, the mesh size of all nets should be controlled above 45 mm to ensure the size of the main prey fish populations in the lower reaches of the Songhua River. In summary, these results provided variation rules and growth of prey fish resources in the lower reaches of the Songhua River. At the same time, the distribution of major commercial or endangered baiting grounds in the lower reaches of the Songhua River was determined, which was beneficial to the balance and integrity of the ecosystem.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3