Sedimentation of cohesive sediments at the subtidal flat affected by wind wave in high turbidity estuary

Author:

Shen Qi,Zhu Qin,Liu Shuguang,Lou Sha,Wu Hualin,Zhu Zhenchang,Xu Bin,Yuan Rui

Abstract

Sedimentation is an important mechanism to mitigate the shrinking of tidal flat and to restore its ecological function by means of sand or mud nourishment. To explore the sedimentation of cohesive sediments, a seabed tripod observation system was deployed at the subtidal region of the Hengsha Shoal adjacent to the turbidity maximum zone of the Yangtze Estuary for 11 days. The results showed that the fine sediment with the median grain size around 8 mm occupied the whole water column. The seabed was in relative equilibrium state with the fluctuation of bed level smaller than 16 mm during the moderate wind condition while the seabed experienced a rapid erosion of 38mm and a successive intensive accretion of 68mm during the process of wind wave and swell. The bottom hydrodynamic at 0.3mab during the bed accretion was stronger than that during the bed erosion. The deposition process of cohesive sediments can be better described by the simultaneous deposition paradigm than that by the exclusive deposition paradigm according to the direct data-model comparison of the bed level changes, especially during the impact of fluid mud. Three possible reasons for the better performance of the simultaneous deposition paradigm were proposed. The first possibility is that the fine suspended sediments do maintain a continuous contact with the sediment bed since the direct bed level changes during our observation period has been well reproduced by the simultaneous deposition paradigm. The second possibility is the SSC-induced turbulence damping which facilitates the fine sediment settling in the form of cohesive sediment flocs, indicating the settling of sediments can’t be judged by the critical shear stress for deposition just based on the single particle grain size. The last possibility is the fluid mud-induced overestimated bed shear stress by using turbulent velocity fluctuation above the fluid mud-water interface, which produces excess sediment erosion waiting to be compensated by the simultaneous deposition paradigm. For practical modeling purposes, modeling under the simultaneous deposition paradigm can give satisfactory results for the sedimentation of cohesive sediment especially during the impact of wave or swell.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Development Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference97 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3