The distribution of North Atlantic right whales in Canadian waters from 2015-2017 revealed by passive acoustic monitoring

Author:

Durette-Morin Delphine,Evers Clair,Johnson Hansen D.,Kowarski Katie,Delarue Julien,Moors-Murphy Hilary,Maxner Emily,Lawson Jack W.,Davies Kimberley T. A.

Abstract

Northward range shifts are increasingly being identified in mobile animals that are responding to climate change. Range shifts are consequential to animal ecology, ecosystem function, and conservation goals, yet for many species these cannot be characterised without means of synoptically measuring their distribution. The distribution of critically endangered North Atlantic right whale (Eubalaena glacialis; NARW) north of 45°N has been largely unknown due to a lack of systematic monitoring. The objectives of this study were to characterize the spatial and temporal variation in NARW acoustic occurrence in the northern portion of their foraging range. In addition, we sought to identify relevant NARW migratory corridors and explore potential previously unidentified high-use habitats beyond the highly surveyed Gulf of St. Lawrence (GSL). To achieve this, passive acoustic monitoring data were collected and analyzed from 67 moorings and 13 gliders deployed (across 38 recording stations) throughout the Atlantic Canadian continental shelf, between 42°N and 58°N during 2015 through 2017. The results support that while a portion of the population has moved northward into the GSL, this shift was constrained to temperate latitudinal ranges < 52°N during the study period. NARWs were not detected in the Labrador Sea and Newfoundland Shelf, despite their preferred prey occurring in those areas. NARWs were present on the Scotian Shelf (45°N) nearly year-round, but only from May through December in the Cabot Strait (50°N). These results indicate that the northern range of the population is probably influenced by energetic requirements to minimize the distance between suitable foraging habitat and low latitude calving grounds, rather than an absence of suitable foraging conditions in high latitude waters, or other environmental or physiological factors. This work provides critical information to conserve the species and mitigate human-induced risks.

Funder

Natural Sciences and Engineering Research Council of Canada

Marine Environmental Observation Prediction and Response Network

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3