Unsupervised identification of Greater Caribbean manatees using Scattering Wavelet Transform and Hierarchical Density Clustering from underwater bioacoustics recordings

Author:

Merchan Fernando,Contreras Kenji,Poveda Héctor,Guzman Hector M.,Sanchez-Galan Javier E.

Abstract

IntroductionThis work presents an unsupervised learning-based methodology to identify and count unique manatees using underwater vocalization recordings.MethodsThe proposed approach uses Scattering Wavelet Transform (SWT) to represent individual manatee vocalizations. A Manifold Learning approach, known as PacMAP, is employed for dimensionality reduction. A density-based algorithm, known as Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), is used to count and identify clusters of individual manatee vocalizations. The proposed methodology is compared with a previous method developed by our group, based on classical clustering methods (K-Means and Hierarchical clustering) using Short-Time Fourier Transform (STFT)-based spectrograms for representing vocalizations. The performance of both approaches is contrasted by using a novel vocalization data set consisting of 23 temporally captured Greater Caribbean manatees from San San River, Bocas del Toro, in western Panama as input.ResultsThe proposed methodology reaches a mean percentage of error of the number of individuals (i.e., number of clusters) estimation of 14.05% and success of correctly grouping a manatee in a cluster of 83.75%.DiscussionThus having a better performances than our previous analysis methodology, for the same data set. The value of this work lies in providing a way to estimate the manatee population while only relying on underwater bioacoustics.

Funder

Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación

Publisher

Frontiers Media SA

Reference58 articles.

1. The k-means algorithm: A comprehensive survey and performance evaluation;Ahmed;Electronics,2020

2. Deep scattering spectrum;Andén;IEEE Trans. Signal Process.,2014

3. Kymatio: Scattering transforms in python;Andreux;J. Mach. Learn. Res.,2020

4. Kymatio:wavelet scattering transforms in python with gpu acceleration;Andreux;Journal of Machine Learning Research.,2020

5. The role of sirenians in aquatic ecosystems;Aragones,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3