Development of Specific DNA Barcodes for the Dinophyceae Family Kareniaceae and Their Application in the South China Sea

Author:

Zhang Weiqian,Zhang Qingchun,Smith Kirsty F.,Qiu Limei,Liu Chao,Yin Xiaoting,Liu Qing

Abstract

Species from the family Kareniaceae (Dinophyceae) frequently cause harmful algal blooms (HABs), with serious ecological impacts and risks to human safety and aquaculture activities in coastal waters worldwide. However, due to their small size, lack of morphological divergence, and low abundance during non-bloom periods, the diversity within this family is not well understood. By comparing the commonly used molecular markers, the Internal Transcribed Spacer (ITS) region was found to have an appropriate mutation rate to distinguish three of the most common genera (Karenia, Karlodinium, and Takayama) within the Kareniaceae family and different geographical strains of Kareniaceae. Specific primers targeting the ITS region of Karenia, and the other primers specific to the genera Karlodinium and Takayama, were designed. Specificity of the primers was tested using 17 strains of Kareniaceae species and 15 non-target species. Representative Kareniaceae species could be successfully detected even at low concentrations of target DNA template with a limit of detection of 3.2 pg. The primers were also assessed using high-throughput sequencing with two environmental samples from the South China Sea (SCS). Analysis of the reads identified as Kareniaceae species revealed a high diversity and the existence of unreported Kareniaceae species in the SCS. In conclusion, the newly developed molecular barcodes specifically detected Kareniaceae species in the field and will provide technical support for the effective warning and monitoring of Kareniaceae HABs.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3