Marine life and fisheries around offshore oil and gas structures in southeastern Australia and possible consequences for decommissioning

Author:

Sih Tiffany L.,Cure Katherine,Yilmaz I. Noyan,McLean Dianne,Macreadie Peter I.

Abstract

The Gippsland Basin is the location of Australia’s oldest offshore oil and gas (O&G) structures, with hydrocarbon production beginning in the 1960s. The Bass Strait flows over this area with fisheries providing seafood for the major population centers of Melbourne, Sydney and beyond. Since Australia’s maritime legislation restricts activities to outside of 500 meters from O&G structures as a security exclusion zone, these O&G structures may serve as de facto marine protected areas that may have spillover effects to local fisheries. Therefore, it is critical to understand the habitat value of O&G infrastructure to marine life in the Bass Strait and whether decommissioning of these structures affect local marine ecosystems and fisheries. We analyzed industry-collected remotely operated vehicle (ROV) imagery from 2008-2018 and compared this data with reported catch data from fishing vessels operating in this region collected by the Australian Fisheries Management Authority (AFMA) from 2008-2018. We assessed species richness and relative abundance on two platforms and two pipelines and compared the species composition with retained catch reported by commercial fishers operating in Commonwealth fisheries. We found diverse communities of fishes and invertebrates around O&G structures, with a different subset of species inhabiting pipelines than platforms. We found little overlap between the species that were targeted by commercial fishers and those found around O&G structures (10% overlap), however, species composition data from fisheries often groups species making the data coarse and under-representative of true species diversity. Fishery-independent data from ROV imagery or other methods greatly augments our understanding of deepwater marine communities, including those around O&G structures. Combining data sources provides a holistic look at these novel ecosystems and provides better insight into future decommissioning scenarios.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3