Oceanic response to typhoons in the Northwest Pacific using Aquarius and SMAP data (2011–2020)

Author:

Park Kyung-Ae,Park Jae-Jin,Tang Wenqing

Abstract

Typhoons, such as tropical cyclones, can produce a variety of ocean responses through drastic changes in atmospheric and oceanic environments. However, the uncertainty in satellite salinity data increases during the passage of a typhoon and may limit its potential application. To investigate whether the satellite salinity data can explain oceanic responses to typhoons in the Northwest Pacific, we validated the satellite salinity using Argo float data for the past decade (2011–2020). The Soil Moisture Active Passive (SMAP) and Aquarius salinity were relatively accurate in subtropical regions at low latitudes under high sea surface temperature conditions in summer. This demonstrates the validity of the satellite salinity data in typhoon studies. We analyzed the oceanic responses to 20 representative typhoons over the past decade. Both the Aquarius and SMAP satellites observed a decrease in the SSS on the left side of the typhoon in contrast to the high salinity on the right side of the typhoon. The locations of SSS freshening coincided with those of higher precipitation to the left of the typhoon centers. We also observed that the higher the precipitation rate, the lower the satellite salinity. The ratio of the salinity freshening to the precipitation rate was significant at approximately –0.0401 psu mm-1 h-1. Changes in the vertical profiles of the Argo data supported this partial freshening of salinity as well as the characteristic surface cooling and deepening of the mixed layer after the passage of the typhoon. We further demonstrated that the atmospheric environments in a rotated coordinate system along the typhoon paths showed clear salinity freshening in the forward and slightly left sides of the typhoon center. The spatial distinction of the wind and precipitation fields along the typhoon paths induced the characteristic synoptic response of salinity prior to the arrival of each typhoon. Our results provide reasonable observational evidence of oceanic responses to typhoons in the Northwest Pacific and contribute to the understanding of atmospheric and oceanic processes related to tropical storms.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3