Community Assembly Processes as a Mechanistic Explanation of the Predator-Prey Diversity Relationship in Marine Microbes

Author:

Chang Feng-Hsun,Yang Jinny Wu,Liu Ariana Chih-Hsien,Lu Hsiao-Pei,Gong Gwo-Ching,Shiah Fuh-Kwo,Hsieh Chih-hao

Abstract

Predator and prey α-diversities are often positively associated; yet, understandings of the underlying mechanisms require manipulative experiments and thus remain unclear. We attempt to address this issue by deciphering how α-diversity of predator and prey influences each other’s community assembly processes, which subsequently determine their α-diversity. The occurrence of assembly processes was indicated by the mean pairwise taxonomic index within a community (αMPTI), assuming assembly processes left traceable imprints on species’ phylogeny. Specifically, αMPTI quantifies deviations of observed phylogenetic distances from that of random, so that it can be used to hint at the occurrence of non-random/deterministic assembly processes. Larger αMPTI of a community implies the occurrence of weaker homogenizing deterministic assembly processes, which suggests that this community might be comprised of less similar species and thus has higher α-diversity. We hypothesize that higher predator and prey α-diversity would be positively associated with each other’s αMPTI, which would then be positively associated with their α-diversity. To test the hypothesis, we calculated Shannon diversity and αMPTI for heterotrophic nanoflagellates (HNF; predator) and bacteria (prey) communities in the East China Sea (ECS). The HNF Shannon diversity was found to be positively associated with αMPTI of bacteria, which was then positively associated with bacterial Shannon diversity. In contrast, bacterial Shannon diversity did not correlate with HNF’s αMPTI. We argue that top-down control is one of the explanations to the positive α-diversity association among trophic levels in microbes of the ECS.

Funder

National Center for Theoretical Sciences

National Taiwan University

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3