Spatial and temporal variations in sea surface pCO2 and air-sea flux of CO2 in the Bering Sea revealed by satellite-based data during 2003–2019

Author:

Zhang Siqi,Bai Yan,He Xianqiang,Jiang Zhiting,Li Teng,Gong Fang,Yu Shujie,Pan Delu

Abstract

The understanding of long-time-series variations in air-sea CO2 flux in the Bering Sea is critical, as it is the passage area from the North Pacific Ocean water to the Arctic. Here, a data-driven remote sensing retrieval method is constructed based on a large amount of underway partial pressure of CO2 (pCO2) data in the Bering Sea. After several experiments, a Gaussian process regression model with input parameters of sea surface temperature, sea surface height, mixed-layer depth, chlorophyll a concentration, dry air mole fractions of CO2, and bathymetry was selected. After validation with independent data, the root mean square error of pCO2 was< 24 μatm (R2 = 0.94) with satisfactory performance. Then, we reconstructed the sea surface pCO2 in the Bering Sea from 2003 to 2019 and estimated the corresponding air-sea CO2 fluxes. Significant seasonal variations were identified, with higher sea surface pCO2 in winter/spring than in summer/autumn in both the basin and shelf area. Semiquantitative analysis reveals that the Bering Sea is a non-temperature-dominated area with a mean temperature effect on pCO2 of 12.7 μatm and a mean non-temperature effect of −51.8 μatm. From 2003 to 2019, atmospheric pCO2 increased at a rate of 2.1 μatm yr−1, while sea surface pCO2 in the basin increased rapidly (2.8 μatm yr−1); thus, the CO2 emissions from the basin increased. However, the carbon sink in the continental shelf still continuously increased. The whole Bering Sea exhibited an increasing carbon sink with the area integral of air-sea CO2 fluxes increasing from 6 to 19 TgC over 17 years. Meanwhile, the seasonal amplitudes in pCO2 in the shelf area also increased, approaching 14 μatm per decade. The reaction of the continuously added CO2 in continental seawater reduced the ocean CO2 system capacity. This is the first study to present long-time-series satellite data with high resolution in the Bering Sea, which is beneficial for studying the changes in ocean ecosystems and carbon sink capacity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference119 articles.

1. Salinity regime of the northwestern Bering Sea shelf;Abe;Prog. In Oceanog.,2021

2. AmanteC. EakinsB. W. Etopo1 arc-minute global relief model: procedures, data sources and analysis2009

3. A multi-decade record of high-quality fco 2 data in version 3 of the surface ocean Co 2 atlas (Socat);Bakker;Earth Sys. Sci. Data,2016

4. A long-term record of blended satellite and In situ Sea-surface temperature for climate monitoring, modeling and environmental studies;Banzon;Earth Sys. Sci. Data,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3