Impact of Thermohaline Conditions on Vertical Variability of Optical Properties in the Gulf of Finland (Baltic Sea): Implications for Water Quality Remote Sensing

Author:

Aavaste Age,Sipelgas Liis,Uiboupin Rivo,Uudeberg Kristi

Abstract

Vertical variability of inherent optical properties (IOPs) affect the water quality retrievals from remote sensing data. Here, we studied the vertical variability of IOPs and simulated apparent optical properties (AOPs) in the Gulf of Finland (Baltic Sea) under three characteristic (non)stratification conditions. In the case of mixed water column, the vertical variability of optically significant constituents (OSC) and IOPs was relatively small. While in case of stratified water column the IOPs of surface layer were three times higher compared to the IOPs below the thermocline and the IOPs were strongly correlated with the physical parameters (temperature, salinity). Measurements of IOPs in stratified water column showed that the ratio of scattering (b(440)) to absorption (a(440)) changed under the thermocline (b(440)/a(440) < 1) i.e., absorption became the dominant component of attenuation under thermocline while the opposite is true for the upper layer. Simulated (from IOPs) spectral irradiance reflectance (R(λ)) and spectral diffuse attenuation coefficient (Kd(λ)) from deeper layers (below thermocline) have significantly smaller magnitude and smoother shape. This becomes relevant during upwelling events—a common process in the coastal Baltic Sea. We quantified the effect of upwelling on surface water properties using simulated AOPs. The simulated AOPs (from IOPs measurements) showed a decrease of the signal up to 68.8% and an increase of optical depth (z90(λ)) from 2.3 to 4.3 m in the green part of the spectrum in case upwelled water mass reaches the surface. In the coastal waters a vertical decrease of Kd(λ) in the PAR region (400–700 nm) by 6.8% (surface to 20 m depth) was observed, while vertical decrease of chlorophyll-a (Chl-a) and total suspended matter (TSM) was 31.7 and 42.1%, respectively. The ratio R(490)/R(560)≥0.77 indicates also the upwelled water mass. The study showed that upwelling is a process that, in addition to biological activity, horizontal transport of OSC, and temperature changes, alters the optical signal of surface water measured by a remote sensor. Knowledge about the vertical variability of IOPs and AOPs relation to upwelling can help the parametrisation of remote sensing algorithms for retrieving water quality estimates in the coastal regions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3