The distribution and behaviour of Fe, Al, Si, Mn, Cu and Ni in ombrotrophic tropical peat draining blackwater estuaries on Borneo Island

Author:

Ukotije-Ikwut Peter R.,Steiner Zvi,Gledhill Martha,Müller Moritz,Oakes Joanne M.,Sukri Rahayu Sukmaria,Jiang Shan,Achterberg Eric P.

Abstract

Tropical peat swamps are essential ecosystems, which provide numerous services, and also serve as a rich source of dissolved organic carbon (DOC), hydrogen ions and trace elements to peat draining rivers. However, not much is known about trace element export from tropical peat swamps. We investigated trace element dynamics in rivers and estuaries draining tropical peat swamps on Borneo, and examined the influence of estuarine processes as well as dissolved organic carbon (DOC) on the distribution and concentration of trace elements. Our results indicate acidic conditions (pH = 3.3) and high DOC concentration (3500 µmol L−1) at salinities<1. We observed an initial release of trace elements at low salinity (0.05<S< 0.5), followed by scavenging to particles at intermediate salinities (0.5<S<10) due to an increasing ionic strength and pH. Peak concentrations (µmol kg −1) of Al (24.9), Si (96.2), Mn (4.9), Cu (0.035) and Ni (0.047) were observed during the dry season (July), and Fe concentrations (43.2) were highest during the wet season (December). We used the NICA-Donnan model to investigate the combined impact of DOC and pH on the formation of solid iron hydroxide (Fe(OH)3(s)). The Maludam river was predicted to be supersaturated for Fe hydroxides and the results affirmed our model prediction. The output showed Fe and Cu had a strong affinity for DOC and to a lesser extent Al and Ni in the conditions prevailing at the study sites. Statistical analyses also indicated strong correlation between Cu and Ni (r2 = 0.97, 0.94 and 0.82) in Maludam, Sebuyau and Belait rivers and estuaries, respectively. The results obtained in this study are comparable to values published for southeast Asia and other continents for pristine peat draining rivers.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3