Genome-wide DNA methylation and transcription analysis reveal the potential epigenetic mechanism of heat stress response in the sea cucumber Apostichopus japonicus

Author:

Chang Mengyang,Ge Jianlong,Liao Meijie,Rong Xiaojun,Wang Yingeng,Li Bin,Li Xinrong,Wang Jinjin,Zhang Zheng,Yu Yongxiang,Wang Chunyuan

Abstract

DNA methylation is an important epigenetic modification that regulates many biological processes. The sea cucumber Apostichopus japonicus often suffers from heat stress that affects its growth and leads to significant economic losses. In this study, the mRNA expression patterns and DNA methylation characteristics in the body wall of A. japonicus under heat stress were analyzed by whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing (RNA-seq). We found that CpG was the main DNA methylation type, and heat stress caused a significant increase in the overall methylation level and methylation rate, especially in the intergenic region of the A. japonicus genome. In total, 1,409 differentially expressed genes (DEGs) and 17,927 differentially methylated genes (DMGs) were obtained by RNA-seq and WGBS, respectively. Association analysis between DNA methylation and transcription identified 569 negatively correlated genes in both DMGs and DEGs, which indicated that DNA methylation affects on transcriptional regulation in response to heat stress. These negatively correlated genes were significantly enriched in pathways related to energy metabolism and immunoregulation, such as the thyroid hormone signaling pathway, renin secretion, notch signaling pathway and microRNAs in cancer. In addition, potential key genes, including heat shock protein (hsp70), calcium-activated chloride channel regulator 1(clca1), and tenascin R (tnr), were obtained and their expression and methylation were preliminarily verified. The results provide a new perspective for epigenetic and transcriptomic studies of A. japonicus response to heat stress, and provide a reference for breeding sea cucumbers resistant to high temperatures.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3