Modeling carbon dioxide removal via sinking of particulate organic carbon from macroalgae cultivation

Author:

Chen Si,Strong-Wright Jago,Taylor John R.

Abstract

Macroalgae cultivation is receiving growing attention as a potential carbon dioxide removal (CDR) strategy. Macroalgae biomass harvesting and/or intentional sinking have been the main focus of research efforts. A significant amount of biomass is naturally lost through erosion and breakage of cultivated or naturally growing seaweed, but the contribution of the resulting particulates to carbon sequestration is relatively unexplored. Here, we use a fully coupled kelp-biogeochemistry model forced by idealized parameters in a closed system to estimate the potential of macroalgal-derived particulate organic carbon (POC) sinking as a CDR pathway. Our model indicates that at a kelp density of 1.1 fronds m−3, macroalgal POC sinking can export 7.4 times more carbon to the deep sea (depths > 500m) and remove 5.2 times more carbon from the atmosphere (equivalent to an additional 336.0 gC m−2 yr−1) compared to the natural biological pump without kelp in our idealized closed system. The results suggest that CDR associated with POC sinking should be explored as a possible benefit of seaweed farming and point to the need for further study on organic carbon partitioning and its bioavailability to quantify the effectiveness and impacts of macroalgal cultivation as a CDR strategy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3