Author:
Xu Xingkun,Voermans Joey,Waseda Takuji,Moon Il-Ju,Liu Qingxiang,Babanin Alexander V.
Abstract
Spume, large-radius seawater droplets that are ejected from the ocean into the atmosphere, can exchange moisture and heat fluxes with the surrounding air. Under severe weather conditions, spume can substantially mediate air-sea fluxes through thermal effects and thus needs to be physically parameterized. While the impact made by spume on air-sea interactions has been considered in bulk turbulent air-sea algorithms, various hypotheses in current models have resulted in uncertainties remaining regarding the effect of spume on air-sea coupling. In this study, we extended a classic bulk turbulent air-sea algorithm with a “bag-breakup” physical scheme of spume generation parameterizations to include spume effects in a complicated numerical model. To investigate the impact of spume on air-sea coupling, we conducted numerical experiments in a simulation of Tropical Cyclone Narelle. We observed a significant improvement in the ability to model minimum central pressure and maximum sustained surface wind speed when including the bag-breakup spume scheme. In particular, the impact of the bag breakup–generated spume is observed in the intensity, structure, and size of the tropical cyclone system through the modulation of local wind speed (U10), wave height (Hs), and sea surface temperature.
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献