Phosphate enrichment increases the resilience of the pulsating soft coral Xenia umbellata to warming

Author:

Klinke Annabell,Mezger Selma D.,Thobor Bianca,Tilstra Arjen,El-Khaled Yusuf C.,Wild Christian

Abstract

Hard corals are in decline as a result of the simultaneous occurrence of global (e.g., ocean warming) and local (e.g., inorganic eutrophication) factors, facilitating phase shifts towards soft coral dominated reefs. Yet, related knowledge about soft coral responses to anthropogenic factors remains scarce. We thus investigated the ecophysiological response of the pulsating soft coral Xenia umbellata to individual and combined effects of phosphate enrichment (1, 2, and 8 μM) and ocean warming (26 to 32°C) over 35 days. Throughout the experiment, we assessed pulsation, mortality, Symbiodiniaceae density, and cellular chlorophyll a content. Simulated ocean warming up to 30°C led to a significant increase in polyp pulsation and by the end of the experiment to a significant increase in Symbiodiniaceae density, whereas cellular chlorophyll a content significantly decreased with warming, regardless of the phosphate treatment. The combination of phosphate enrichment and simulated ocean warming increased pulsation significantly by 41 – 44%. Warming alone and phosphate enrichment alone did not affect any of the investigated response parameters. Overall, X. umbellata displayed a high resilience towards ocean warming with no mortality in all treatments. Phosphate enrichment enabled soft corals to significantly increase their pulsation under increasing temperatures which may enhance their resilience towards ocean warming. This, in turn, could further facilitate their dominance over hard corals on future reefs.

Funder

Universität Bremen

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3