Applications of the Fourier neural operator in a regional ocean modeling and prediction

Author:

Choi Byoung-Ju,Jin Hong Sung,Lkhagvasuren Bataa

Abstract

In this paper, we apply the Fourier neural operator (FNO) paradigm to ocean circulation and prediction problems. We aim to show that the complicated non-linear dynamics of an ocean circulation can be captured by a flexible, efficient, and expressive structure of the FNO networks. The machine learning model (FNO3D and the recurrent FNO2D networks) trained by simulated data as well as real data takes spatiotemporal input and predicts future ocean states (sea surface current and sea surface height). For this, the double gyre ocean circulation model driven by stochastic wind stress is considered to represent an ideal ocean circulation. In order to generate the training and test data that exhibits rich spatiotemporal variability, the initial states are perturbed by Gaussian random fields. Experimental results confirm that the trained models yield satisfactory prediction accuracy for both types of FNO models in this case. Second, as the training set, we used the HYCOM reanalysis data in a regional ocean. FNO2D experiments demonstrated that the 5-day input to 5-day prediction yields the averaged root mean square errors (RMSEs) of 5.0 cm/s, 6.7 cm/s, 7.9 cm/s, 8.9 cm/s, and 9.4 cm/s in surface current, calculated consecutively for each day, in a regional ocean circulation of the East/Japan Sea. Similarly, the RMSEs for sea surface height were 2.3 cm, 3.5 cm, 4.2 cm, 4.6 cm, and 4.9 cm, for each day. We also trained the model with 15-day input and 10-day prediction, resulting in comparable performance. Extensive numerical tests show that, once learned, the resolution-free FNO model instantly forecasts the ocean states and can be used as an alternative fast solver in various inference algorithms.

Funder

National Research Foundation

Korea Institute of Marine Science and Technology promotion

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3