Divergent transcriptional response to thermal stress among life stages could constrain coral adaptation to climate change

Author:

Ruggeri Maria,Zhang Yingqi,Aglyamova Galina V.,Kenkel Carly D.

Abstract

The ability for adaptation to track environmental change depends on how efficiently selection can act on heritable genetic variation. Complex life cycles may promote or constrain adaptation depending on the integration or independence of fitness-related traits over development. Reef-building corals exhibit life cycle complexity and are sensitive to increasing temperatures, highlighting the need to understand heritable potential of the thermal stress response and its developmental regulation. We used tag-based RNA-seq to profile holobiont gene expression of inshore and offshore Porites astreoides adults and recruit offspring in response to a 16-day heat stress, and larvae in response to a 4-day heat stress. Host developmental stage affected both broad patterns of host and symbiont expression, and modulated the stress response in both partners, suggesting that symbiotic interactions could vary between host developmental stages and influence the thermal stress response. Populations also exhibited origin-specific treatment responses, but response magnitude differed among life-stages. Inshore parents and recruit offspring exhibited a more robust stress response, exhibiting greater expression profile divergence and differentially expressing more genes compared to offshore-origin corals. This suggests genetic or epigenetic inheritance of regulatory mechanisms giving rise to expression plasticity, although ontogenetic plasticity as a result of the local reef environment during larval development could also explain the origin effect. However, larval populations exhibited the opposite response, with offshore larvae exhibiting a more robust stress response, possibly due to stage-specific effects or exposure duration. Overall, these results show that putatively adaptive regulatory variation persists in thermally naïve life stages, but thermally responsive genes are stage-specific, which could complicate the evolutionary response of corals to climate change.

Funder

Alfred P. Sloan Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3