Active trachoma: enhancing image classification using pretrained SOTA models and explainable AI

Author:

Pan Yongjun,Lan Wenyao,Xu Binbin

Abstract

BackgroundTrachoma, an infectious disease that leads to blindness, continues to pose a significant public health challenge in over 40 countries as of 2023. The initial phase of this disease, “active trachoma” is characterized by inflammation and can be effectively treated with non-surgical interventions. However, if left untreated, it progresses to the “scarring” phase, often requiring surgical intervention. Earlier detection of “active trachoma” is critical to prevent unnecessary surgery and also to reduce the transmission of the infection. Developing accessible tools for a region with limited resources is necessary. Deep neural networks have proven their effectiveness in numerous image and vision-related tasks, yet research on “active trachoma” has received still little attention.MethodIn this study, we adapted several pre-trained state-of-the-art deep neural network models like ResNet, Xception from image classification on “active classification” task. Further experiments were also conducted in three cases: training from scratch, training from pretrained models on raw images and on region-of-interest (ROI) focused images.Results and discussionThe results indicate that these models outperformed the previous studies using the same dataset, achieving an improvement of 6\% on detection of follicular trachomatous inflammation and 12\% for detection of intense trachomatous inflammation. Furthermore, we employed the eXplainable Artificial Intelligence tool Grad-CAM, which revealed a significant discrepancy between eyelid's geometric centroid and attention centroid from models with high classification accuracy. This finding suggests that the conventional method of selecting a region of interest based on the geometric centroid may need to be adjusted. Using XAI can offer valuable insights into understanding the classification and progression of active trachoma.

Publisher

Frontiers Media SA

Reference22 articles.

1. Eyelid and eyelash segmentation based on wavelet transform for iris recognition;Aligholizadeh;2011. 4th. Int. Congress. Image. Signal Process.,2011

2. Xception: Deep learning with depthwise separable convolutions;Chollet,2017

3. Trachoma;Dawson,2011

4. The applicability of cycle gans for pupil and eyelid segmentation, data generation and image refinement;Fuhl,2019

5. 500,000 images closer to eyelid and pupil segmentation;Fuhl,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3