On-chip liquid sensing using mid-IR plasmonics

Author:

Hinkov B.,David M.,Strasser G.,Schwarz B.,Lendl B.

Abstract

The investigation of molecules in the mid-IR spectral range has revolutionized our understanding in many fields such as atmospheric chemistry and environmental sensing for climate research or disease monitoring in medical diagnosis. While the mid-IR analysis of gas-samples is already a mature discipline, the spectroscopy of liquids is still in its infancy. However, it is a rapidly developing field of research, set to fundamentally change our knowledge of dynamical processes of molecules in liquid-phase. In this field, mid-IR plasmonics has emerged as breakthrough concept for miniaturization, enabling highly-sensitive and -selective liquid measurement tools. In this review, we give an overview over current trends and recent developments in the field of mid-IR spectroscopy of molecules in liquid phase. Special attention is given to plasmon-enhanced concepts that allow measurements in highly compact sensor schemes. Nowadays, they reach full monolithic integration, including laser, interaction section and detector on the same chip, demonstrating unprecedented operation in situ and real-time analysis of chemical processes.

Funder

Horizon 2020 Framework Programme

European Research Council

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3