Charge-transfer states in photosynthesis and organic solar cells

Author:

Hustings Jeroen,Bonné Robin,Cornelissen Rob,Morini Filippo,Valcke Roland,Vandewal Koen,Manca Jean V.

Abstract

Light-induced charge-transfer mechanisms are at the heart of both photosynthesis and photovoltaics. The underlying photophysical mechanisms occurring within photosynthesis and organic photovoltaics in particular show striking similarities. However, they are studied by distinct research communities, often using different terminology. This contribution aims to provide an introductory review and comparison of the light-induced charge-transfer mechanisms occurring in natural photosynthesis and synthetic organic photovoltaics, with a particular focus on the role of so-called charge-transfer complexes characterized by an excited state in which there is charge-transfer from an electron-donating to an electron-accepting molecular entity. From light absorption to fully separated charges, it is important to understand how a charge-transfer complex is excited, forming a charge-transfer state, which can decay to the ground state or provide free charge carries in the case of photovoltaics, or radicals for photochemistry in photosynthetic complexes. Our motivation originates from an ambiguity in the interpretation of charge-transfer states. This review attempts to standardize terminology between both research fields with the general aim of initiating a cross-fertilization between the insights and methodologies of these two worlds regarding the role of charge-transfer complexes, inspiring the cross-disciplinary development of next-generation solar cells. Likewise, we hope to encourage photosynthesis researchers to collaborate with the photovoltaics field, thereby gaining further knowledge of the charge-transfer process in natural light-harvesting systems.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3