Advancements in microemulsion-based fabrication of upconversion-mediated multifunctional materials

Author:

Zhang Yi,Mei Qingsong,Zhang Zhen

Abstract

Upconversion nanoparticles (UCNPs) have experienced significant advancements, finding applications in diverse fields over the past decade. The growing demand for UCNP-based nanoplatforms with multifunctionality to address complex scenarios has led to the emergence of the microemulsion confined self-assembly method, which allows for the integration of different UCNPs or UCNPs with additional functional materials within a single entity, resulting in a nanoplatform that possesses a wide range of properties suitable for specific applications. This comprehensive review aimed to summarize recent developments in the design of UCNP assemblies using the microemulsion confined self-assembly method, which focused on exploring their applications in critical areas such as color encoding, bioimaging, and programmable therapeutics. Furthermore, the review acknowledged the existing limitations associated with the microemulsion confined self-assembly method and provided an in-depth discussion of potential solutions to overcome these challenges, aiming to foster further progress and innovation in the design and application of UCNP assemblies.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3