Evaluation of an English language phoneme-based imagined speech brain computer interface with low-cost electroencephalography

Author:

LaRocco John,Tahmina Qudsia,Lecian Sam,Moore Jason,Helbig Cole,Gupta Surya

Abstract

IntroductionParalyzed and physically impaired patients face communication difficulties, even when they are mentally coherent and aware. Electroencephalographic (EEG) brain–computer interfaces (BCIs) offer a potential communication method for these people without invasive surgery or physical device controls.MethodsAlthough virtual keyboard protocols are well documented in EEG BCI paradigms, these implementations are visually taxing and fatiguing. All English words combine 44 unique phonemes, each corresponding to a unique EEG pattern. In this study, a complete phoneme-based imagined speech EEG BCI was developed and tested on 16 subjects.ResultsUsing open-source hardware and software, machine learning models, such as k-nearest neighbor (KNN), reliably achieved a mean accuracy of 97 ± 0.001%, a mean F1 of 0.55 ± 0.01, and a mean AUC-ROC of 0.68 ± 0.002 in a modified one-versus-rest configuration, resulting in an information transfer rate of 304.15 bits per minute. In line with prior literature, the distinguishing feature between phonemes was the gamma power on channels F3 and F7.DiscussionHowever, adjustments to feature selection, trial window length, and classifier algorithms may improve performance. In summary, these are iterative changes to a viable method directly deployable in current, commercially available systems and software. The development of an intuitive phoneme-based EEG BCI with open-source hardware and software demonstrates the potential ease with which the technology could be deployed in real-world applications.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Reference29 articles.

1. BCI demographics: how many (and what kinds of) people can use an SSVEP BCI?;Allison;IEEE Trans. Neural Syst. Rehabil. Eng.,2010

2. AmemaetF. 2021

3. Phoneme probability presentation of continuous speech based on phoneme spotting;Ariki;Stud. Phonol.,1991

4. The Berlin brain-computer Interface: EEG-based communication without subject training;Blankertz;IEEE Trans. Neural Syst. Rehabil. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3