A review: Music-emotion recognition and analysis based on EEG signals

Author:

Cui Xu,Wu Yongrong,Wu Jipeng,You Zhiyu,Xiahou Jianbing,Ouyang Menglin

Abstract

Music plays an essential role in human life and can act as an expression to evoke human emotions. The diversity of music makes the listener's experience of music appear diverse. Different music can induce various emotions, and the same theme can also generate other feelings related to the listener's current psychological state. Music emotion recognition (MER) has recently attracted widespread attention in academics and industry. With the development of brain science, MER has been widely used in different fields, e.g., recommendation systems, automatic music composing, psychotherapy, and music visualization. Especially with the rapid development of artificial intelligence, deep learning-based music emotion recognition is gradually becoming mainstream. Besides, electroencephalography (EEG) enables external devices to sense neurophysiological signals in the brain without surgery. This non-invasive brain-computer signal has been used to explore emotions. This paper surveys EEG music emotional analysis, involving the analysis process focused on the music emotion analysis method, e.g., data processing, emotion model, and feature extraction. Then, challenging problems and development trends of EEG-based music emotion recognition is proposed. Finally, the whole paper is summarized.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Reference92 articles.

1. ECG pattern analysis for emotion detection;Agrafioti;IEEE Trans. Affect. Comput,2011

2. Emotions recognition using EEG signals: a survey;Alarcao;IEEE Trans. Affect. Comput,2017

3. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers;Atkinson;Expert Syst. Appl,2016

4. “Multiscale fractal analysis on EEG signals for music-induced emotion recognition,”;Avramidis;2021 29th European Signal Processing Conference (EUSIPCO),2021

5. Evidence of chaotic dynamics of brain activity during the sleep cycle;Babloyantz;Phys. Lett. A,1985

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3