Author:
Turner James Paul,Nowotny Thomas
Abstract
Motivated by the challenge of investigating the reproducibility of spiking neural network simulations, we have developed the Arpra library: an open source C library for arbitrary precision range analysis based on the mixed Interval Arithmetic (IA)/Affine Arithmetic (AA) method. Arpra builds on this method by implementing a novel mixed trimmed IA/AA, in which the error terms of AA ranges are minimised using information from IA ranges. Overhead rounding error is minimised by computing intermediate values as extended precision variables using the MPFR library. This optimisation is most useful in cases where the ratio of overhead error to range width is high. Three novel affine term reduction strategies improve memory efficiency by merging affine terms of lesser significance. We also investigate the viability of using mixed trimmed IA/AA and other AA methods for studying reproducibility in unstable spiking neural network simulations.
Funder
Engineering and Physical Sciences Research Council
Horizon 2020
Subject
Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献