Nonconvex Nonlocal Tucker Decomposition for 3D Medical Image Super-Resolution

Author:

Jia Huidi,Chen Xi'ai,Han Zhi,Liu Baichen,Wen Tianhui,Tang Yandong

Abstract

Limited by hardware conditions, imaging devices, transmission efficiency, and other factors, high-resolution (HR) images cannot be obtained directly in clinical settings. It is expected to obtain HR images from low-resolution (LR) images for more detailed information. In this article, we propose a novel super-resolution model for single 3D medical images. In our model, nonlocal low-rank tensor Tucker decomposition is applied to exploit the nonlocal self-similarity prior knowledge of data. Different from the existing methods that use a convex optimization for tensor Tucker decomposition, we use a tensor folded-concave penalty to approximate a nonlocal low-rank tensor. Weighted 3D total variation (TV) is used to maintain the local smoothness across different dimensions. Extensive experiments show that our method outperforms some state-of-the-art (SOTA) methods on different kinds of medical images, including MRI data of the brain and prostate and CT data of the abdominal and dental.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Reference47 articles.

1. Isotropic Reconstruction of MR Images Using 3D Patch-Based Self-Similarity Learning;Bustin;IEEE Trans. Med. Imag.,2018

2. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition;Carroll;Psychometrika,1970

3. Tensor low-rank reconstruction for semantic segmentation,;Chen,2020

4. Simultaneous tensor decomposition and completion using factor priors;Chen;IEEE Trans. Pattern Anal. Mach. Intell.,2014

5. Brain web: online interface to a 3D MRI simulated brain database;Cocosco;Neuroimage,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3