MIIND : A Model-Agnostic Simulator of Neural Populations

Author:

Osborne Hugh,Lai Yi Ming,Lepperød Mikkel Elle,Sichau David,Deutz Lukas,de Kamps Marc

Abstract

MIIND is a software platform for easily and efficiently simulating the behaviour of interacting populations of point neurons governed by any 1D or 2D dynamical system. The simulator is entirely agnostic to the underlying neuron model of each population and provides an intuitive method for controlling the amount of noise which can significantly affect the overall behaviour. A network of populations can be set up quickly and easily using MIIND's XML-style simulation file format describing simulation parameters such as how populations interact, transmission delays, post-synaptic potentials, and what output to record. During simulation, a visual display of each population's state is provided for immediate feedback of the behaviour and population activity can be output to a file or passed to a Python script for further processing. The Python support also means that MIIND can be integrated into other software such as The Virtual Brain. MIIND's population density technique is a geometric and visual method for describing the activity of each neuron population which encourages a deep consideration of the dynamics of the neuron model and provides insight into how the behaviour of each population is affected by the behaviour of its neighbours in the network. For 1D neuron models, MIIND performs far better than direct simulation solutions for large populations. For 2D models, performance comparison is more nuanced but the population density approach still confers certain advantages over direct simulation. MIIND can be used to build neural systems that bridge the scales between an individual neuron model and a population network. This allows researchers to maintain a plausible path back from mesoscopic to microscopic scales while minimising the complexity of managing large numbers of interconnected neurons. In this paper, we introduce the MIIND system, its usage, and provide implementation details where appropriate.

Funder

Horizon 2020

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3