Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System

Author:

Jiricek Stanislav,Koudelka Vlastimil,Lacik Jaroslav,Vejmola Cestmir,Kuratko David,Wójcik Daniel K.,Raida Zbynek,Hlinka Jaroslav,Palenicek Tomas

Abstract

This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3