Empirical comparison of deep learning models for fNIRS pain decoding

Author:

Fernandez Rojas Raul,Joseph Calvin,Bargshady Ghazal,Ou Keng-Liang

Abstract

IntroductionPain assessment is extremely important in patients unable to communicate and it is often done by clinical judgement. However, assessing pain using observable indicators can be challenging for clinicians due to the subjective perceptions, individual differences in pain expression, and potential confounding factors. Therefore, the need for an objective pain assessment method that can assist medical practitioners. Functional near-infrared spectroscopy (fNIRS) has shown promising results to assess the neural function in response of nociception and pain. Previous studies have explored the use of machine learning with hand-crafted features in the assessment of pain.MethodsIn this study, we aim to expand previous studies by exploring the use of deep learning models Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and (CNN-LSTM) to automatically extract features from fNIRS data and by comparing these with classical machine learning models using hand-crafted features.ResultsThe results showed that the deep learning models exhibited favourable results in the identification of different types of pain in our experiment using only fNIRS input data. The combination of CNN and LSTM in a hybrid model (CNN-LSTM) exhibited the highest performance (accuracy = 91.2%) in our problem setting. Statistical analysis using one-way ANOVA with Tukey's (post-hoc) test performed on accuracies showed that the deep learning models significantly improved accuracy performance as compared to the baseline models.DiscussionOverall, deep learning models showed their potential to learn features automatically without relying on manually-extracted features and the CNN-LSTM model could be used as a possible method of assessment of pain in non-verbal patients. Future research is needed to evaluate the generalisation of this method of pain assessment on independent populations and in real-life scenarios.

Publisher

Frontiers Media SA

Reference62 articles.

1. Frontal lobe hemodynamic responses to painful stimulation: a potential brain marker of nociception;Aasted;PLoS ONE,2016

2. “Optuna: a next-generation hyperparameter optimization framework,”;Akiba;Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery,2019

3. “A cnn-lstm hybrid model for wrist kinematics estimation using surface electromyography,”;Bao;IEEE Transactions on Instrumentation and Measurement,2020

4. Representation learning: a review and new perspectives;Bengio;IEEE Trans. Pattern Anal. Mach. Intell,2013

5. “Algorithms for hyper-parameter optimization,”;Bergstra;Advances in Neural Information Processing Systems 24 (NIPS 2011,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3