ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulations

Author:

Miedema Rene,Strydis Christos

Abstract

IntroductionIn-silico simulations are a powerful tool in modern neuroscience for enhancing our understanding of complex brain systems at various physiological levels. To model biologically realistic and detailed systems, an ideal simulation platform must possess: (1) high performance and performance scalability, (2) flexibility, and (3) ease of use for non-technical users. However, most existing platforms and libraries do not meet all three criteria, particularly for complex models such as the Hodgkin-Huxley (HH) model or for complex neuron-connectivity modeling such as gap junctions.MethodsThis work introduces ExaFlexHH, an exascale-ready, flexible library for simulating HH models on multi-FPGA platforms. Utilizing FPGA-based Data-Flow Engines (DFEs) and the dataflow programming paradigm, ExaFlexHH addresses all three requirements. The library is also parameterizable and compliant with NeuroML, a prominent brain-description language in computational neuroscience. We demonstrate the performance scalability of the platform by implementing a highly demanding extended-Hodgkin-Huxley (eHH) model of the Inferior Olive using ExaFlexHH.ResultsModel simulation results show linear scalability for unconnected networks and near-linear scalability for networks with complex synaptic plasticity, with a 1.99 × performance increase using two FPGAs compared to a single FPGA simulation, and 7.96 × when using eight FPGAs in a scalable ring topology. Notably, our results also reveal consistent performance efficiency in GFLOPS per watt, further facilitating exascale-ready computing speeds and pushing the boundaries of future brain-simulation platforms.DiscussionThe ExaFlexHH library shows superior resource efficiency, quantified in FLOPS per hardware resources, benchmarked against other competitive FPGA-based brain simulation implementations.

Publisher

Frontiers Media SA

Reference68 articles.

1. “Arbor-a morphologically-detailed neural network simulation library for contemporary high-performance computing architectures,”;Abi Akar,2019

2. Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip;Akopyan;IEEE Trans. Comput. Aided Des. Integr. Circ. Syst,2015

3. UltraScale Architecture and Product Data Sheet: Overview2023

4. Cognitive computing programming paradigm: a corelet language for composing networks of neurosynaptic cores,”;Amir;The 2013 International Joint Conference on Neural Networks (IJCNN) (IEEE),2013

5. Brain research challenges supercomputing;Amunts;Science,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3