Author:
Arthur Benjamin J.,Kim Christopher M.,Chen Susu,Preibisch Stephan,Darshan Ran
Abstract
Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a popular way to study computations performed by the nervous system. As the size and complexity of neural recordings increase, there is a need for efficient algorithms that can train models in a short period of time using minimal resources. We present optimized CPU and GPU implementations of the recursive least-squares algorithm in spiking neural networks. The GPU implementation can train networks of one million neurons, with 100 million plastic synapses and a billion static synapses, about 1,000 times faster than an unoptimized reference CPU implementation. We demonstrate the code's utility by training a network, in less than an hour, to reproduce the activity of > 66, 000 recorded neurons of a mouse performing a decision-making task. The fast implementation enables a more interactive in-silico study of the dynamics and connectivity underlying multi-area computations. It also admits the possibility to train models as in-vivo experiments are being conducted, thus closing the loop between modeling and experiments.
Funder
Howard Hughes Medical Institute
National Institutes of Health
Subject
Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献