TReC: Transferred ResNet and CBAM for Detecting Brain Diseases

Author:

Xiao Yuteng,Yin Hongsheng,Wang Shui-Hua,Zhang Yu-Dong

Abstract

Early diagnosis of pathological brains leads to early interventions in brain diseases, which may help control the illness conditions, prolong the life of patients, and even cure them. Therefore, the classification of brain diseases is a challenging but helpful task. However, it is hard to collect brain images, and the superabundance of images is also a great challenge for computing resources. This study proposes a new approach named TReC: Transferred Residual Networks (ResNet)-Convolutional Block Attention Module (CBAM), a specific model for small-scale samples, to detect brain diseases based on MRI. At first, the ResNet model, which is pre-trained on the ImageNet dataset, serves as initialization. Subsequently, a simple attention mechanism named CBAM is introduced and added into every ResNet residual block. At the same time, the fully connected (FC) layers of the ResNet are replaced with new FC layers, which meet the goal of classification. Finally, all the parameters of our model, such as the ResNet, the CBAM, and new FC layers, are retrained. The effectiveness of the proposed model is evaluated on brain magnetic resonance (MR) datasets for multi-class and two-class tasks. Compared with other state-of-the-art models, our model reaches the best performance for two-class and multi-class tasks on brain diseases.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3