Exploring EEG-based motor imagery decoding: a dual approach using spatial features and spectro-spatial Deep Learning model IFNet

Author:

Juan Javier V.,Martínez Rubén,Iáñez Eduardo,Ortiz Mario,Tornero Jesús,Azorín José M.

Abstract

IntroductionIn recent years, the decoding of motor imagery (MI) from electroencephalography (EEG) signals has become a focus of research for brain-machine interfaces (BMIs) and neurorehabilitation. However, EEG signals present challenges due to their non-stationarity and the substantial presence of noise commonly found in recordings, making it difficult to design highly effective decoding algorithms. These algorithms are vital for controlling devices in neurorehabilitation tasks, as they activate the patient's motor cortex and contribute to their recovery.MethodsThis study proposes a novel approach for decoding MI during pedalling tasks using EEG signals. A widespread approach is based on feature extraction using Common Spatial Patterns (CSP) followed by a linear discriminant analysis (LDA) as a classifier. The first approach covered in this work aims to investigate the efficacy of a task-discriminative feature extraction method based on CSP filter and LDA classifier. Additionally, the second alternative hypothesis explores the potential of a spectro-spatial Convolutional Neural Network (CNN) to further enhance the performance of the first approach. The proposed CNN architecture combines a preprocessing pipeline based on filter banks in the frequency domain with a convolutional neural network for spectro-temporal and spectro-spatial feature extraction.Results and discussionTo evaluate the approaches and their advantages and disadvantages, EEG data has been recorded from several able-bodied users while pedalling in a cycle ergometer in order to train motor imagery decoding models. The results show levels of accuracy up to 80% in some cases. The CNN approach shows greater accuracy despite higher instability.

Funder

Generalitat Valenciana

Publisher

Frontiers Media SA

Reference37 articles.

1. Performance variation in motor imagery brain-computer interface: a brief review;Ahn;J. Neurosci. Methods,2015

2. EEG-based strategies to detect Motor Imagery for control and rehabilitation;Ang;J. Biomedical Science and Engineering,2008

3. MIN2Net: end-to-end multi-task learning for subject-independent motor imagery EEG classification;Autthasan;IEEE Trans. Biomed. Eng,2021

4. Seizure onset zone identification from iEEG: a review;Balaji;IEEE Access,2022

5. EEG motor execution decoding via interpretable sinc-convolutional neural networks;Borra;XV Mediterranean Conference on Medical and Biological Engineering and Computing,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3