Application of a Hermite-based measure of non-Gaussianity to normality tests and independent component analysis

Author:

Jain Parul,Knight Bruce W.,Victor Jonathan D.

Abstract

In the analysis of neural data, measures of non-Gaussianity are generally applied in two ways: as tests of normality for validating model assumptions and as Independent Component Analysis (ICA) contrast functions for separating non-Gaussian signals. Consequently, there is a wide range of methods for both applications, but they all have trade-offs. We propose a new strategy that, in contrast to previous methods, directly approximates the shape of a distribution via Hermite functions. Applicability as a normality test was evaluated via its sensitivity to non-Gaussianity for three families of distributions that deviate from a Gaussian distribution in different ways (modes, tails, and asymmetry). Applicability as an ICA contrast function was evaluated through its ability to extract non-Gaussian signals in simple multi-dimensional distributions, and to remove artifacts from simulated electroencephalographic datasets. The measure has advantages as a normality test and, for ICA, for heavy-tailed and asymmetric distributions with small sample sizes. For other distributions and large datasets, it performs comparably to existing methods. Compared to standard normality tests, the new method performs better for certain types of distributions. Compared to contrast functions of a standard ICA package, the new method has advantages but its utility for ICA is more limited. This highlights that even though both applications—normality tests and ICA—require a measure of deviation from normality, strategies that are advantageous in one application may not be advantageous in the other. Here, the new method has broad merits as a normality test but only limited advantages for ICA.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Reference34 articles.

1. Normality tests for latent variables;Almuzara;Quant. Econ.,2019

2. “A new learning algorithm for blind signal separation,” AmariS. I. CichockiA. YangH. Advances in Neural Information Processing Systems, Vol. 81995

3. Moment tests of independent components;Amengual;SERIEs,2022

4. “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes,”;Anderson;The annals of Mathematical Statistics,1952

5. An information-maximization approach to blind separation and blind deconvolution;Bell;Neural Comput,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3