The design of Datascapes: toward a design framework for sonification for anomaly detection in AI-supported networked environments

Author:

Lenzi Sara,Terenghi Ginevra,Meacci Damiano,Moreno Fernandez-de-Leceta Aitor,Ciuccarelli Paolo

Abstract

There is a growing need for solutions that can improve the communication between anomaly detection algorithms and human operators. In the context of real-time monitoring of networked systems, it is crucial that new solutions do not increase the burden on an already overloaded visual channel. Sonification can be leveraged as a peripheral monitoring tool that complements current visualization systems. We conceptualized, designed, and prototyped Datascapes, a framework project that explores the potential of sound-based applications for the monitoring of cyber-attacks on AI-supported networked environments. Within Datascapes, two Design Actions were realized that applied sonification on the monitoring and detection of anomalies in (1) water distribution networks and (2) Internet networks. Two series of prototypes were implemented and evaluated in a real-world environment with eight experts in network management and cybersecurity. This paper presents experimental results on the use of sonification to disclose anomalous behavior and assess both its gravity and the location within the network. Furthermore, we define and present a design methodology and evaluation protocol that, albeit grounded in sonification for anomaly detection, can support designers in the definition, development, and validation of real-world sonification applications.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference77 articles.

1. Data presentation in security operations centres: exploring the potential for sonification to enhance existing practice;Axon;J. Cybersecu.,2020

2. Hearing Attacks in Network Data: An Effectiveness Study;Axon;Comp. Secu,2019

3. A formalised approach to designing sonification systems for network-security monitoring;Axon;Int. J. Adv. Secur.,2017

4. Knowing by ear: leveraging human attention abilities in interaction design;Bakker;J. Multimodal User Interf.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3