Posiform planting: generating QUBO instances for benchmarking

Author:

Hahn Georg,Pelofske Elijah,Djidjev Hristo N.

Abstract

We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. Such problems are NP-hard in general, implying that the exact minima of randomly generated instances are hard to find and thus typically unknown. While brute forcing smaller instances is possible, such instances are typically not interesting due to being too easy for both quantum and classical algorithms. In this contribution, we propose a novel method, called posiform planting, for generating random QUBO instances of arbitrary size with known optimal solutions, and use those instances to benchmark the sampling quality of four D-Wave quantum annealers utilizing different interconnection structures (Chimera, Pegasus, and Zephyr hardware graphs) and the simulated annealing algorithm. Posiform planting differs from many existing methods in two key ways. It ensures the uniqueness of the planted optimal solution, thus avoiding groundstate degeneracy, and it enables the generation of QUBOs that are tailored to a given hardware connectivity structure, provided that the connectivity is not too sparse. Posiform planted QUBOs are a type of 2-SAT boolean satisfiability combinatorial optimization problems. Our experiments demonstrate the capability of the D-Wave quantum annealers to sample the optimal planted solution of combinatorial optimization problems with up to 5, 627 qubits.

Funder

Los Alamos National Laboratory

Bulgarian National Science Fund

National Institutes of Health

Cure Alzheimer's Fund

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3