SKELTER: unsupervised skeleton action denoising and recognition using transformers

Author:

Paoletti Giancarlo,Beyan Cigdem,Del Bue Alessio

Abstract

Unsupervised Human Action Recognition (U-HAR) methods currently leverage large-scale datasets of human poses to solve this challenging problem. As most of the approaches are dedicated to reaching the best recognition accuracies, no attention has been put into analyzing the resilience of such methods given perturbed data, a likely occurrence in real in-the-wild testing scenarios. Our first contribution is to systematically validate the decrease in performance of current U-HAR state-of-the-art using perturbed or altered data (e.g., obtained by removing some skeletal joints, rotating the entire pose, and injecting geometrical aberrations). Then, we propose a novel framework based on a transformer encoder–decoder with remarkable de-noising capabilities to counter such perturbations effectively. Moreover, we also present additional losses to have robust representations against rotation variances and provide temporal motion consistency. Our model, SKELTER, shows limited drops in performance when skeleton noise is present compared with previous approaches, favoring its use in challenging in-the-wild settings.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference73 articles.

1. Learning local feature descriptors with triplets and shallow convolutional neural networks;Balntas;BMVC,2016

2. Coding kendall's shape trajectories for 3D action recognition;Ben Tanfous;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

3. Is space-time attention all you need for video understanding?;Bertasius;ICML,2021

4. Modeling multiple temporal scales of full-body movements for emotion classification;Beyan;IEEE Trans. Affect. Comput.,2021

5. Language models are few-shot learners;Brown;Advances in Neural Information Processing Systems 33,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3