Recognition of Alzheimer’s Dementia From the Transcriptions of Spontaneous Speech Using fastText and CNN Models

Author:

Meghanani Amit,Anoop C. S.,Ramakrishnan Angarai Ganesan

Abstract

Alzheimer’s dementia (AD) is a type of neurodegenerative disease that is associated with a decline in memory. However, speech and language impairments are also common in Alzheimer’s dementia patients. This work is an extension of our previous work, where we had used spontaneous speech for Alzheimer’s dementia recognition employing log-Mel spectrogram and Mel-frequency cepstral coefficients (MFCC) as inputs to deep neural networks (DNN). In this work, we explore the transcriptions of spontaneous speech for dementia recognition and compare the results with several baseline results. We explore two models for dementia recognition: 1) fastText and 2) convolutional neural network (CNN) with a single convolutional layer, to capture the n-gram-based linguistic information from the input sentence. The fastText model uses a bag of bigrams and trigrams along with the input text to capture the local word orderings. In the CNN-based model, we try to capture different n-grams (we use n = 2, 3, 4, 5) present in the text by adapting the kernel sizes to n. In both fastText and CNN architectures, the word embeddings are initialized using pretrained GloVe vectors. We use bagging of 21 models in each of these architectures to arrive at the final model using which the performance on the test data is assessed. The best accuracies achieved with CNN and fastText models on the text data are 79.16 and 83.33%, respectively. The best root mean square errors (RMSE) on the prediction of mini-mental state examination (MMSE) score are 4.38 and 4.28 for CNN and fastText, respectively. The results suggest that the n-gram-based features are worth pursuing, for the task of AD detection. fastText models have competitive results when compared to several baseline methods. Also, fastText models are shallow in nature and have the advantage of being faster in training and evaluation, by several orders of magnitude, compared to deep models.

Publisher

Frontiers Media SA

Reference42 articles.

1. Bagging predictors;Breiman;Mach. Learn.,1996

2. Alzheimer’s dementia detection from audio and text modalities CampbellE. L. Docío-FernándezL. RabosoJ. J. García-MateoC. 2020

3. A feature study for classification-based speech separation at low signal-to-noise ratios;Chen;IEEE/ACM Trans. Audio Speech Lang. Process.,2014

4. Natural language processing (almost) from scratch;Collober;J. Machine Learn. Res.,2011

5. Approaching human language with complex networks;Cong;Phys. Life Rev.,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3