Task-specific speech enhancement and data augmentation for improved multimodal emotion recognition under noisy conditions

Author:

Kshirsagar Shruti,Pendyala Anurag,Falk Tiago H.

Abstract

Automatic emotion recognition (AER) systems are burgeoning and systems based on either audio, video, text, or physiological signals have emerged. Multimodal systems, in turn, have shown to improve overall AER accuracy and to also provide some robustness against artifacts and missing data. Collecting multiple signal modalities, however, can be very intrusive, time consuming, and expensive. Recent advances in deep learning based speech-to-text and natural language processing systems, however, have enabled the development of reliable multimodal systems based on speech and text while only requiring the collection of audio data. Audio data, however, is extremely sensitive to environmental disturbances, such as additive noise, thus faces some challenges when deployed “in the wild.” To overcome this issue, speech enhancement algorithms have been deployed at the input signal level to improve testing accuracy in noisy conditions. Speech enhancement algorithms can come in different flavors and can be optimized for different tasks (e.g., for human perception vs. machine performance). Data augmentation, in turn, has also been deployed at the model level during training time to improve accuracy in noisy testing conditions. In this paper, we explore the combination of task-specific speech enhancement and data augmentation as a strategy to improve overall multimodal emotion recognition in noisy conditions. We show that AER accuracy under noisy conditions can be improved to levels close to those seen in clean conditions. When compared against a system without speech enhancement or data augmentation, an increase in AER accuracy of 40% was seen in a cross-corpus test, thus showing promising results for “in the wild” AER.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

Reference77 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3