Device-enabled neighborhood-slot allocation for the edge-oriented Internet of Things

Author:

Khan Rahim,Khan Mushtaq,Shah Nadir,Al-Rasheed Amal,Khan Aftab Ahmad

Abstract

Internet of Things (IoT) has become an interesting research domain as numerous devices, preferably equipped with sensors, communication, and actuator modules, are deployed to capture real-time data in the different application areas, such as smart healthcare and industries. These devices have the built-in capacity to directly interact with the physical phenomenon and report any unusual situation within their respective coverage areas, i.e., monitoring a critical patient in the smart hospital but direct communication with a common destination module is not guaranteed and could possibly be very challenging if two or more devices, preferably those in closed proximity, are interested to transmit simultaneously. Therefore, in this manuscript, we are going to present a hybrid slot allocation approach, which is specifically designed for those devices resided in neighborhood and are eager to communication concurrently with a common destination device, i.e., server. In the beginning, the k-mean clustering algorithm is used to group these devices into clusters where server is forced to collect data from devices deployed in the respective coverage areas. Thus, every server generates dedicated slots for active devices and an additional slot for server(s). Similarly, the proposed neighborhood-enabled time division multiple access (TDMA) has the flexibility of assigning multiple slots to a requesting device if available, which is needed in scenarios, such as detection of pest in the field. Additionally, a member device is allowed to migrate (if needed and possible) from one server's coverage region to another. Simulation results confirmed that the proposed approach is better than the existing algorithms (opportunistic TDMA, hybrid TDMA, and non-orthogonal multiple access), particularly in terms of bandwidth, end-to-end delay, and empty slot utilization. The proposed scheme has improved bandwidth and empty slot utilization, which are approximately 15% and 12%, respectively, whereas it has achieved approximately 94.89% utilization of the available slots which was previously 93.4%.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3