Modeling Japanese Praising Behavior by Analyzing Audio and Visual Behaviors

Author:

Onishi Toshiki,Yamauchi Arisa,Ogushi Asahi,Ishii Ryo,Fukayama Atsushi,Nakamura Takao,Miyata Akihiro

Abstract

Praising behavior is considered to be verbal and nonverbal behaviors that expresses praise the behavior and character of the target. However, how one should use verbal and nonverbal behaviors to successfully praise a target has not been clarified. Therefore, we focus on attempts to analyze praising behavior in Japanese dialogue using verbal and nonverbal behaviors. In this study, we attempted to analyze the relationship between praising skills and human behaviors in Japanese dialogue by focusing on voice, head, and face behaviors. First, we created a new dialogue corpus in Japanese containing voice, head, and face behaviors from individuals giving praise (praiser) and receiving praise (receiver), as well as the degree of success of praising (praising score). Second, we developed machine learning models that uses features related to voice, head, and face behaviors to estimate praising skills to clarify which features of the praiser and receiver are important for estimating praising skills. Evaluation resulte showed that some audio features of the praiser are particularly important for estimation of praising skills. Our analysis results demonstrated the importance of features related to the zero-crossing rate, MFCCs of the praiser. Analyzing the features of high importance revealed that the praiser should praise with specific words that mean amazing or great in Japanese and the voice quality of the praiser is considered to be important for praising successfully.

Publisher

Frontiers Media SA

Reference30 articles.

1. “One of a kind: inferring personality impressions in meetings,”;Aran,2013

2. “Openface: an open source facial behavior analysis toolkit,”;Baltrušaitis,2016

3. Multimodal personality recognition in collaborative goal-oriented tasks;Batrinca;IEEE Trans. Multimedia,2016

4. “Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms,”;Bergstra,2013

5. “Facetube: predicting personality from facial expressions of emotion in online conversational video,”;Biel,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Prediction of Listener's Comprehension Based on Multimodal Information;Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents;2023-09-19

2. Analysis of praising skills focusing on utterance contents;Interspeech 2022;2022-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3