A comprehensive evaluation of marker-based, markerless methods for loose garment scenarios in varying camera configurations

Author:

Ray Lala Shakti Swarup,Zhou Bo,Suh Sungho,Lukowicz Paul

Abstract

In support of smart wearable researchers striving to select optimal ground truth methods for motion capture across a spectrum of loose garment types, we present an extended benchmark named DrapeMoCapBench (DMCB+). This augmented benchmark incorporates a more intricate limb-wise Motion Capture (MoCap) accuracy analysis, and enhanced drape calculation, and introduces a novel benchmarking tool that encompasses multicamera deep learning MoCap methods. DMCB+ is specifically designed to evaluate the performance of both optical marker-based and markerless MoCap techniques, taking into account the challenges posed by various loose garment types. While high-cost marker-based systems are acknowledged for their precision, they often require skin-tight markers on bony areas, which can be impractical with loose garments. On the other hand, markerless MoCap methods driven by computer vision models have evolved to be more cost-effective, utilizing smartphone cameras and exhibiting promising results. Utilizing real-world MoCap datasets, DMCB+ conducts 3D physics simulations with a comprehensive set of variables, including six drape levels, three motion intensities, and six body-gender combinations. The extended benchmark provides a nuanced analysis of advanced marker-based and markerless MoCap techniques, highlighting their strengths and weaknesses across distinct scenarios. In particular, DMCB+ reveals that when evaluating casual loose garments, both marker-based and markerless methods exhibit notable performance degradation (>10 cm). However, in scenarios involving everyday activities with basic and swift motions, markerless MoCap outperforms marker-based alternatives. This positions markerless MoCap as an advantageous and economical choice for wearable studies. The inclusion of a multicamera deep learning MoCap method in the benchmarking tool further expands the scope, allowing researchers to assess the capabilities of cutting-edge technologies in diverse motion capture scenarios.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Reference67 articles.

1. “Pose-conditioned joint angle limits for 3d human pose reconstruction,”;Akhter,2015

2. mRI: multi-modal 3d human pose estimation dataset using mmwave, rgb-d, and inertial sensors;An;Adv. Neural Inf. Process. Syst,2022

3. Wearable sensor clothing for body movement measurement during physical activities in healthcare;Ancans;Sensors,2021

4. “A new illuminated contour-based marker system for optical motion capture,”;Barca,2006

5. BatpurevT. bodypose3d2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3