The impact of architectural form on physiological stress: a systematic review

Author:

Valentine Cleo

Abstract

Technological advancements in physiological body sensor networks (i.e., biometric tracking wearables) and simulated environments (i.e., VR) have led to increased research in the field of neuroarchitecture, specifically investigating the effects of architectural forms, defined here as subtle variations in the shape or configuration of the interior built environment, on neurological responses. While this research field is still in its nascent stages, early findings suggest that certain architectural forms may impact physiological stress responses. Physiological stress has, in turn, been implicated in the development of certain diseases, including cardiovascular disease, cancer, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. To aid future research, particularly into the relationship between media architecture and physiological stress, this paper conducts a systematic review following PRISMA-P guidelines on studies that evaluated physiological stress responses to architectural form using clinical biomarkers. The review identifies the specific clinical biomarkers used to evaluate physiological stress responses to architectural forms and the distinct categories of architectural forms that have, to date, been correlated with elevated stress responses: curvature, enclosure and proportion. Although these studies' findings imply that the identified architectural forms influence physiological stress, their generalisability is arguably constrained by several factors. These constraints include the paucity of research in this area, the lack of uniformity in the definition and measurement of these architectural forms, the varying contextual settings, the unisensory approach of research methodologies, and the duration of exposure under evaluation. The review concludes that clinical biomarkers may be used to measure the impact of architectural form on physiological stress; however, future research should strive for standardized approaches in defining and measuring architectural forms in order to increase the transferability and robustness of results.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3